Formation of Dinitrogen by Oxidation of $[(bpy)_2(NH_3)RuORu(NH_3)(bpy)_2]^{4+}$

Osamu Ishitani,1 Peter S. White, and Thomas J. Meyer*

Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514

*Recei*V*ed September 29, 1995*

Coordinated ammonia in ruthenium and osmium polypyridyl complexes is oxidized to the nitrosyl which is in acid-base equilibrium with nitro (bpy is 2,2′-bipyridine; tpy is 2,2′,2′′ terpyridine), e.g. 2,3 mia in ruthenit
d to the nitro
o (bpy is 2,2
 $2+ \frac{-6e^-,-5H^+}{2}$

$$
M(tpy)(bpy)(NH_3)^{2+} \xrightarrow{-6e^-, -5H^+} M(tpy)(bpy)(NO)^{3+}
$$
 (1)

$$
M(tpy)(bpy)(NO)3+ + H2O \rightleftharpoons M(tpy)(bpy)(NO2)+ + 2H+ (2)
$$

$M = Ru$, Os

In μ -oxo complexes, the oxo bridge promotes electronic coupling and provides a short span between ions which influences reactivity.⁴⁻⁶ The most striking example is $[(bpy)₂ (H_2O)Ru^{III}ORu^{III}(OH_2)(bpy)_2$ ¹⁺ (1), in which oxidation occurs by loss of 4 electrons and 4 protons to give O_2 .^{4,6} We report here that oxidation of $[(bpy)_2(NH_3)Ru^{III}ORu^{III}(NH_3)(bpy)_2]^{4+}$ (**2**) leads to dinitrogen.

In the synthesis of 2 , 1^{4b} (2.18 g) dissolved in 200 mL of 28% NH4OH aqueous solution was heated on a steam bath for 30 min. Addition of saturated $NaClO₄$ and cooling in a refrigerator overnight gave 1.47 g of a dark blue solid which is a ∼1:4 mixture of the ClO₄⁻ salt of **2** and [(bpy)₂NH₃)RuORu-(OH)(bpy)2](ClO4)3. ⁷ [*Caution: Perchlorate salts can be explosive.*] The blue solid was collected by filtration and washed with five ∼100 mL portions of acetone to remove the ammine-hydroxo salt. Crystals of the $ClO₄$ salt of 2 were grown by addition of $1 M NaClO₄$ in water to the salt dissolved in 1 M NH4OH.

The molecular structure of **2**⁸ determined by X-ray crystallography of the $ClO₄$ salt is shown in Figure 1. The configuration of the cation is ∆,∆, but there are equal numbers of Λ , Λ and Δ , Δ isomers having the same steric configuration as **1** in the crystal because the cation sits on a 2-fold axis in the centrosymmetric space group *C*2/*c*. 4b The Ru-O bond distance of the bridge, 1.8939(15) Å, is longer than in **1**, 1.869(0) Å,

- (2) Pell, S. D.; Armor, J. N. *J. Am. Chem. Soc.* **1975**, *97*, 5012.
- (3) (a) Thompson, M. S.; Meyer, T. J. *J. Am. Chem. Soc.* **1981**, *103*, 5577- 5578. (b) Murphy, W. R., Jr.; Takeuchi, K. J.; Berley, M. H.; Meyer, T. J. *Inorg. Chem.* **1987**, *25*, 2197.
- (4) (a) Gersten, S. W.; Samuels, G. J.; Meyer, T. J. *J. Am. Chem. Soc.* **1982**, *104*, 4029-4030. (b) Gilbert, J. A.; Eggleston, D. S.; Murphy, W. R., Jr.; Geselowitz, D. A.; Gersten, S. W.; Hodgson, D. J.; Meyer, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 3855-3864. (c) Kutner, W.; Gilbert, J. A.; Tomaszewski, A.; Meyer, T. J.; Murray, R. W. *J. Electroanal. Chem. Interfacial Electrochem.* **1986**, *205*, 185-207. (d) Doppelt, P.; Meyer, T. J. *Inorg. Chem.* **1987**, *26*, 2027-2034. (e) Dobson, J. C.; Sullivan, B. P.; Doppelt, P.; Meyer, T. J. *Inorg. Chem.* **1988**, *27*, 3863-3866. (f) Raven, S. J.; Meyer, T. J. *Inorg. Chem.* **1988**, *27*, 4478-4483. (g) Geselowitz, D.; Meyer, T. J. *Inorg. Chem.* **1990**, *29*, 3892-3896.
- (5) Phelps, D. W.; Kahn, M.; Hodgson, D. J. *Inorg. Chem.* **1975**, *14*, 2486-2490.
- (6) (a) Hurst, J. K.; Zhou, J.; Lei, Y. *Inorg. Chem.* **1992**, *31*, 1010-1017. (b) Comte, P.; Nazeeruddin, M. K.; Rotzinger, F. P.; Frank, A. J.; Grätzel, M. *J. Mol. Catal.* **1989**, 52, 63-84.
- (7) The $ClO₄$ ⁻ salt of the hydroxo ammine has been characterized by elemental analysis and X-ray structure determination (Ishitani, O. Work in progress).

Figure 1. View of 2 in crystals of $[(bpy)_2(NH_3)RuORu(NH_3)(bpy)_2]$ -(ClO4)4. Hydrogen atoms are omitted for clarity.

Figure 2. Potential vs pH diagrams for the reversible $(E_{1/2}, \circlearrowright)$ and irreversible $(E_{p,a}, \bullet)$ waves of **2** in 0.1 M phosphate buffer solutions by cyclic voltammetric measurements at a scan rate of 100 mV/s.

and the Ru-O-Ru angle of $158.2(4)^\circ$ is smaller, $165.4(3)^\circ$. The N1(ammonia)-Ru-Ru-N1(ammonia) torsional angle is 28.45° compared to 65.7° for the O(water)-Ru-Ru-O(water) angle in **1**. 4b The distance between the N atoms of the ammines is 4.816 Å. Similar to **1**, the 1H-NMR spectrum of **2** in DMSO d_6 is paramagnetically shifted with relatively sharp resonances appearing from -12.72 to 26.66 ppm.^{4e} In the UV-visible spectrum in water, absorption maxima appear at 632 nm (ϵ = 37 300 M⁻¹ cm⁻¹), 284 nm (ϵ = 50 600 M⁻¹ cm⁻¹), and 248 nm (37 300 M^{-1} cm⁻¹).

In cyclic voltammograms of solutions containing **2** at pH 4.4 in 0.1 M $NaH₂PO₄$, a reversible, 1-electron wave appears at $E_{1/2}$ = +0.83 V and an irreversible wave at $E_{p,a}$ = +1.15 V vs SSCE. Their variations with pH are shown in Figure 2. The 1-electron couple, $[(bpy)_2(NH_3)RuORu(NH_3)(bpy)_2]^{5+/4+}$, is pH-

0020-1669/96/1335-2167\$12.00/0 © 1996 American Chemical Society

⁽¹⁾ Graduate School of Science and Technology, Saitama University, Shimo-Okubo 255, Urawa, Saitama 338, Japan.

⁽⁸⁾ Crystals of $[(bpy)_2(NH_3)RuORu(NH_3)(bpy)_2](ClO_4)_4$ were monoclinic, of space group *C*2/*c*, with $a = 21.617(4)$ Å, $b = 11.998(3)$ Å, $c =$ 17.999(5) Å, $\beta = 94.469(20)$ °, $V = 4654.0(20)$ Å³, $Z = 4$, $d_{\text{calc}} =$ 1.819 Mg m⁻³, and $\mu = 0.95$ mm⁻¹. Data were collected from a blue needle $0.18 \times 0.18 \times 0.35$ mm, on a Rigaku diffractometer with Mo Kα radiation ($λ = 0.71073$ Å) by using a $θ/2θ$ scan mode with $θ_{\text{max}}$ $=$ 45 $^{\circ}$, resulting in 2778 unique reflections of which 1877 were observed ($I > 2.5\sigma(I)$). No correction was made for absorption. $R =$ 0.038 and $R_w = 0.045$. Attempts to refine the structure in *Cc* failed to improve the agreement factors, indicating *C*2/*C* as the correct choice of space group.

independent below pH 6.5, but decreases by ∼50 mV/pH unit from pH 6.5 to 8.0, consistent with eq 3, and p $K_{a1} \sim 6.5$ for loss of a proton from coordinated NH₃.⁹ This wave falls under the irreversible multielectron-multiproton wave above pH 8.
 $2 \frac{-e^-}{(bpy)_2(NH_2)Ru^{IV}ORu^{III}(NH_3)(bpy)_2]^{4+}} + H^+$ (3)

$$
2 \xrightarrow{-e^-} [(bpy)_2(NH_2)Ru^{IV}ORu^{III}(NH_3)(bpy)_2]^{4+} + H^+ \quad (3)
$$

Following a scan through this wave, new waves appear at *E*1/2 $= 1.05$ and 0.65 V characteristic of the Ru^V-O-Ru^{IV}/Ru^{IV}-O-Ru^{III} and Ru^{IV}-O-Ru^{III}/Ru^{III}-O-Ru^{III} couples of 1 at pH 4.4^{4b}

Controlled-potential electrolysis of **2** at pH 6.9 at a carbon mesh electrode, $E_{app} = 1.05$ V vs SSCE, for 1 h occurred with $n = 8.2$. The products were N₂¹¹ and a mixture of the Ru^V- $O-Ru^{IV}$ and $Ru^{IV}-O-Ru^{III}$ forms of 1. The sum of these was formed in quantitative yield as shown by spectrophotometric and electrochemical analysis.¹¹ Of the total electron count, 6 electrons past 2 are used to oxidize ammonia to N_2 . The remainder leads to the mixture of oxidation states of **1** and some $O₂$.

The variation of $E_{p,a}$ with pH for the irreversible wave is ~85 mV/pH unit (Figure 2). It may involve a net 5-electron oxidation accompanied by loss of 6 protons, eq 4. Oxidation ion states of **1**

rreversible way

volve a net

otons, eq 4.
 $5+$ $\frac{-5e^-,-6H^+}{2}$

$$
\begin{aligned} \n\text{[(bpy)}_2(NH_3)Ru^{IV}ORu^{III}(NH_3)(bpy)_2\text{]}^{5+} \xrightarrow{--5e^-,--6H^+} \\
N_2 + \text{[(bpy)}_2(H_2O)Ru^{III}ORu^{III}(H_2O)(bpy)_2\text{]}^{4+} \n\end{aligned} \tag{4}
$$

of coordinated ammonia and release of N_2 would be followed by further oxidation and proton loss from 2 to give $[(bpy)₂ (OH)Ru^{IV}ORu^{III}(H₂O)(bpy)₂]$ ⁴⁺ and $[(bpy)₂(O)Ru^{IV}ORu^{IV}(O) (by)_{2}]^{3+4b}$

In related monomeric polypyridyl complexes, it has been found, or inferred, that oxidation of coordinated ammonia occurs by electron-proton loss and formation of nitrenes^{13a}
by electron-proton loss and formation of nitrenes^{13a}
 $Os^{II}(tnv)(bnv)(NH₂)²⁺ \frac{-2e}{2} S₁ (tnv)(bnv)(N)$

$$
Os^{II}(typ)(bpy)(NH_3)^{2+} \xrightarrow[–2H^+]{} Os^{IV}(typ)(bpy)(NH)^{2+} (5)
$$

or nitridos12b

ridos^{12b}
\n
$$
Os^{III}(typ)(Cl)2(NH3)+ \xrightarrow{-3e^-} OsVI(typ)(Cl)2(N)3+
$$
 (6)

- (9) From the Nernst equation at room temperature, the reduction potential of a pH-dependent half cell reaction is $E = E_f - (n/m)(0.05916)$ pH where E_f is the formal potential and *n* and *m* are the number of electrons and protons transferred for the half-reaction. See, for example, ref 4b.
- (10) Because of strong electronic coupling across the *µ*-oxo bridge, the use of localized oxidation state labels such as $Ru^{III} - O - Ru^{IV}$ may be inappropriate.
- (11) The relative amounts of Ru^V-O-Ru^IV and $Ru^IV-O-Ru^{III}$ vary with time because of slow water oxidation by Ru^V-O-Ru^IV to give O_2 and Ru^{IV} – $O-Ru^{III}$, $4f,12$ Quantitative spectrophotometric or electrochemical analysis was performed after electrochemical reduction to **1**. Dinitrogen gas, produced in the bulk electrolysis by using a gastight cell, was measured by gas chromatography with a molecular sieve 5A column. Because of the pressure buildup in the cell as N_2 was produced, yields of N_2 were less than stoichiometric. A yield as high as 87% was obtained in a series of three experiments.
- (12) Ni, J.; Binstead, R.; Chronister, C. Work in progress.

$$
\begin{array}{ll}\n & \text{if } (6py)_2(NH_3)Ru^{IV}ORu^{III}(NH_3)(bpy)_2]^{5+} \xrightarrow{-3e^-} \\
 & \text{if } (6py)_2(NH)Ru^{V}ORu^{V}(NH)(bpy)_2]^{4+} \xrightarrow{-2e^-} \\
 & 3 & \text{if } (bpy)_2(N)Ru^{VI}ORu^{VI}(N)(bpy)_2]^{4+} \\
 & (7)\n\end{array}
$$

followed by $N-N$ coupling.¹⁴ It has been reported that oxidation of a face-to-face Ru porphyrin containing axially ligated NH3 in an organic solvent with 1 equiv of *tert*-butyl hydroperoxide gives the corresponding μ -dinitrogen complex in 4% yield, the *μ*-diazene in 6% yield, and the *μ*-hydrazine in 17% yield.¹⁵

The appearance of intramolecular $N-N$ coupling¹⁴ is significant in its implications for the design of possible catalysts for N_2 reduction. In a more strongly reducing coordination environment having a related bridging structure, the reverse of eq 4 may occur through intermediates related to **3** and **4**.

The yield of **1** upon oxidation of **2** is quantitative below pH 8, decreases to 80% at pH 9.3, and decreases further to 55% at pH 12.2. $[(by)_2(NO_2)RuORu(NO_2)(bpy)_2]^2$ ⁺ appears as an additional product at high pH as shown by UV-visible and electrochemical measurements.5 It is produced in 11% yield at pH 12.2. Two other, as yet unidentified, blue or green products were detected by ion exchange chromatography. At pH 12.2, the electrolysis (0.6 V, 1 h) occurred with $n = \sim 10$ and N₂ was obtained in $~\sim$ 50% yield.

Oxidation of related monomeric ammines is known to give nitrosyls, eq 1. These reactions also appear to occur through intermediates such as nitridos, e.g., $M(tpy)(bpy)(N)^{3+}$, followed by water attack at the N atom, further oxidation, and proton loss.3 A related chemistry exists for **2**, as evidenced by the appearance of $[(bpy)_2(NO_2)RuORu(NO_2)(bpy)_2]^2$ ⁺ as a product above pH ∼9. Presumably, if intermediates such as **3** or **4** form, there is a competition in the subsequent chemistry between $N-N$ coupling and OH^- attack, with OH^- attack increasing in importance as the pH is raised.

Acknowledgment is made to the National Institutes of Health (Grant No. 5-RO1-GM-32296-05) and the Science and Technology Agency, Japan, for financial support.

Supporting Information Available: A listing of spectral and elemental analysis data for **2** and tables of atomic coordinates, thermal parameters, and bond distances and angles for the ClO₄⁻ salt of 2 (7) pages). Ordering information is given on any current masthead page.

IC9512643

in

- (13) (a) Coia, G. M.; White, P. S.; Meyer, T. J.; Wink, D. A.; Keefer, L. K.; Davis, W. M. *J. Am. Chem. Soc.* **1994**, *116*, 3649-3650. (b) Pipes, D. W.; Bakir, M.; Vitols, S. E.; Hodgson, D. J.; Meyer, T. J. *J. Am. Chem. Soc.* **1990**, *112*, 5507-5514.
- (14) Except for the expected variations in peak current, changing the concentration of **2** had no influence on voltammetric wave shapes; thus the N-N coupling chemistry appears to be intramolecular.
- (15) Collman, J. P.; Hutchison, J. E.; Ennis, M. S.; Lopez, M. A.; Guilard, R. *J. Am. Chem. Soc.* **1992**, *114*, 8074-8080.